A Statistical Approach towards Unknown Word Type Prediction for Deep Grammars

نویسندگان

  • Yi Zhang
  • Valia Kordoni
چکیده

This paper presents a statistical approach to unknown word type prediction for a deep HPSG grammar. Our motivation is to enhance robustness in deep processing. With a predictor which predicts lexical types for unknown words according to the context, new lexical entries can be generated on the fly. The predictor is a maximum entropy based classifier trained on a HPSG treebank. By exploring various feature templates and the feedback from parse disambiguation results, the predictor achieves precision over 60%. The models are general enough to be applied to other constraint-based grammar formalisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PreRkTAG: Prediction of RNA Knotted Structures Using Tree Adjoining Grammars

Background: RNA molecules play many important regulatory, catalytic and structural <span style="font-variant: normal; font-style: norma...

متن کامل

A Survey on Study Habits of Medical Students in Shiraz Medical School

Background: Study habits and skills are very important particularly in medical school which is characterized by heavy workload, heavy time commitments, and high stakes assessments. Students’ approach to learning, which includes study habits, has an important impact on both the excellence of the learning and their academic success. The aim of this study was to evaluate the study habits of Shiraz...

متن کامل

Town trip forecasting based on data mining techniques

In this paper, a data mining approach is proposed for duration prediction of the town trips (travel time) in New York City. In this regard, at first, two novel approaches, including a mathematical and a statistical approach, are proposed for grouping categorical variables with a huge number of levels. The proposed approaches work based on the cost matrix generated by repetitive post-hoc tests f...

متن کامل

Automated Deep Lexical Acquisition for Robust Open Texts Processing

In this paper, we report on methods to detect and repair lexical errors for deep grammars. The lack of coverage has for long been the major problem for deep processing. The existence of various errors in the hand-crafted large grammars prevents their usage in real applications. The manual detection and repair of errors requires a significant amount of human effort. An experiment with the Britis...

متن کامل

Dependency Parsing Resources for French: Converting Acquired Lexical Functional Grammar F-Structure Annotations and Parsing F-Structures Directly

Recent years have seen considerable success in the generation of automatically obtained wide-coverage deep grammars for natural language processing, given reliable and large CFG-like treebanks. For research within Lexical Functional Grammar framework, these deep grammars are typically based on an extended PCFG parsing scheme from which dependencies are extracted. However, increasing success in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005